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We present a stochastic Green function algorithm designed for bosons on lattices. This quantum Monte Carlo
algorithm is independent of the dimension of the system, works in continuous imaginary time, and is exact �no
error beyond statistical errors�. Hamiltonians with several species of bosons �and one-dimensional Bose-Fermi
Hamiltonians� can be easily simulated. Some important features of the algorithm are that it works in the
canonical ensemble and gives access to n-body Green functions.
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I. INTRODUCTION

In the last 20 years, numerical methods have gained im-
portance with the increasing power of computers. They have
been solicited in situations where analytical results are miss-
ing, due to the complexity of the studied problems, and
where approximate methods fail to give a correct description.
But even with computers, exact calculations are often limited
to special cases. This is especially true for quantum many-
body problems where the size of the Hilbert space grows
exponentially with the size of the system, restricting exact
diagonalizations to very small systems. Quantum Monte
Carlo �QMC� methods have been developed in order to
simulate bigger systems, and allow a correct description of
quantum fluctuations, which are usually missed by mean-
field theories �1�. QMC methods have given rise to various
kinds of algorithms �2–11�.

We propose here an algorithm designed for bosons on
lattices, the stochastic Green function �SGF� algorithm. The
algorithm is independent of the dimension of the system, and
works in continuous imaginary time. The algorithm is exact,
in the sense that it has no error beyond statistical errors.
Hamiltonians with several species of bosons �12–14� �and
one-dimensional Bose-Fermi mixtures �15–17�� are easily
treated. An important property is that the SGF algorithm
works in the canonical ensemble. This is especially impor-
tant when working with several species of particles, because
it is numerically difficult to control several numbers of par-
ticles in the grand-canonical ensemble. Indeed, working with
several species in the grand-canonical ensemble requires one
chemical potential per species. Those chemical potentials
have to be tuned to find the desired number of particles. But
the difficulty comes from the fact that the number of par-
ticles of a given species depends on all the chemical poten-
tials. Working in the canonical ensemble makes things much
simpler, by just choosing the number of particles for each
species. Another property of the algorithm is that it provides
access to n-body Green functions, allowing the calculation of
momentum distribution functions which are important for the
connection between theory and experiments.

II. MOTIVATIONS

We consider a Hamiltonian of the form

Ĥ = V̂ − T̂ , �1�

where V̂ and T̂ are, respectively, the diagonal and nondiago-
nal �positive definite� operators. We would like to have at our
disposal an algorithm that is simple and able to simulate any
Hamiltonian of the form �1�, in the canonical ensemble �for
the reason above�. As an example, we will consider a Hamil-
tonian describing two species of particles, atoms and di-
atomic molecules. The particles from one species interact
together, and interact with particles of the other species. We
also take into account the possibility for atoms to be con-
verted into molecules, and vice versa. The situation can be

described by the following V̂ and T̂ operators:

V̂ = Uaa�
i

n̂i
a�n̂i

a − 1� + Umm�
i

n̂i
m�n̂i

m − 1� + Uam�
i

n̂i
an̂i

m

+ D�
i

n̂i
m, �2�

T̂ = ta�
�i,j�

�ai
†aj + h . c .� + tm�

�i,j�
�mi

†mj + H.c.�

+ g�
i

�mi
†aiai + ai

†ai
†mi� . �3�

V̂ and T̂ correspond, respectively, to the potential and
�kinetic+conversion� energies. The ai

† and ai operators �mi
†

and mi� are the creation and annihilation operators of atoms
�molecules� on site i, and n̂i

a=ai
†ai �n̂i

m=mi
†mi� counts the

number of atoms �molecules� on site i. The sum �i , j� is over

pairs of first nearest neighbors. We can see that the T̂ opera-
tor allows atoms and molecules to jump onto neighboring
sites, and that two atoms can be transformed into one mol-
ecule �and vice versa�. The total number of atoms Na=�in̂i

a

and the total number of molecules Nm=�in̂i
m are not con-

served; however, the number N=Na+2Nm is conserved. This
is our canonical constraint. We will not discuss at all the
physics of this Hamiltonian, referring the interested reader to
the literature �12–14�.

Among existing QMC algorithms, the canonical worm
�CW� algorithm �10,11� is a good choice if one wants to
work in the canonical ensemble and to have access to Green
functions. However, this algorithm makes use of a “worm

operator” Ŵ, and some complexity of the algorithm arises
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when T̂ does not commute with Ŵ �see Sec. III B�. It is

always possible to make the trivial choice Ŵ=1+ T̂ for the

worm operator, which leads to a zero commutator, �Ŵ , T̂�
=0. But such a choice is not appropriate at all when the T̂
operator connects only neighboring sites �which is usually
the case�. Indeed, this would lead to a worm operator that is
unable to generate spatial discontinuities of the worldlines
for which the broken parts are separated by more than one
lattice site. Therefore it would be impossible to measure
Green functions which require long-range discontinuities of
the worldlines. Moreover, this choice for the worm operator
generates only local updates, which are known to be much
less efficient than global updates. Finally, those local updates
cannot sample the winding, which is a quantity of interest
when working with periodic boundary conditions. As a re-

sult, a more complicated choice has to be made for Ŵ. For

our chosen T̂ operator, it is not trivial to find a suitable Ŵ
operator that commutes with T̂ and satisfies the requirements

just mentioned. While a suitable Ŵ operator might exist, we
have not managed to find one that can be easily handled.
Reference �10� proposes an extension of the applicability of
the worm operator, but this goes beyond our purposes of
simplicity and generality. The SGF algorithm we propose is
an alternative way to simulate any Hamiltonian of the form
�1� in a very simple and general way. Basically, once one has
a SGF computer code that simulates a given Hamiltonian,
the only thing necessary to extend the code to another
Hamiltonian is to change the definition of the Hamiltonian in
the code.

III. THE ALGORITHM

A. The partition function and the “Green operator”

The SGF algorithm is derived from the CW algorithm. We

start by considering the partition function Z���=Tr e−�Ĥ,
and we perform the expansion

Z��� = Tr e−�V̂T�exp�	
0

�

T̂���d�

= Tr�

n=0

+� 	
0��1�¯��n��

e−�V̂T̂��n� ¯ T̂��2�

�T̂��1�d�1 ¯ d�n, �4�

where T� is the time ordering operator and T̂��� is defined by

T̂��� = e�V̂T̂e−�V̂. �5�

By introducing complete sets of states I=�������� between

each nondiagonal operator T̂, we get

Z��� = �	
0��1�¯��n��

��0�e−�VT̂��n���n−1���n−1�T̂��n−1�

���n−2� ¯ � ¯ ��k�T̂��k���k−1� ¯ � ¯ ��2�T̂��2�

���1���1�T̂��1���0�d�1 ¯ d�n. �6�

Using the notation Vk for the eigenvalue of V̂ in the eigen-

state ��k�, Vk= ��k�V̂��k�, each matrix element in �6� takes the
form

��k�T̂�����l� = e�Vk��k�T̂��l�e−�Vl. �7�

It is useful here to give an interpretation of expression �6�.
We assume for the simplicity of this interpretation that we
have only one species of particles on a one-dimensional lat-

tice, and that the T̂ operator is the usual one-body operator
that makes the particles jump onto neighboring sites. The
partition function is a sum over all possible configurations of
time indices �1 , . . . ,�n and states ���k�. Figure 1 �left image�
shows a representation of a possible configuration. We start
at imaginary time �=0 with a state ��0� that contains three
particles. Then the state evolves with the operator e−�1V0 until
time �1. During this evolution, the state does not change

because the V̂ operator is diagonal. At time �1 a T̂ operator
acts on the state, leading to a sum of several new states. In
this sum of states, only the state ��1� survives when the sca-
lar product is made with the bra ��1�. This new state differs
from ��0� by a jump of only one particle, since we have

assumed in our example that T̂ is a one-body operator. Thus
at time �1 one particle jumps onto a neighboring site. The
new state ��1� then evolves without changing with the opera-
tor e−��2−�1�V1 until time �2. At time �2 one particle jumps onto
a neighboring site, leading to the new state ��2�¯ and so on,
until time �n, where a last jump of one particle leads to the
initial state ��0�, which evolves without changing with the
operator e−��−�n�Vn until time �. As a result, one configuration
of time indices �1 , . . . ,�n and states ���k� corresponds to a
set of lines �the worldlines� that the particles follow. Because
the partition function is a trace, the same state appears both
at the beginning and the end of the imaginary time evolution:
The worldlines are periodic with period �. So the partition
function has been written as a path integral.

In order to sample the partition function �6�, we define an
extended partition function Z�� ,�� by breaking up the

propagator e−�Ĥ at imaginary time � and introducing a

“Green operator” Ĝ,
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FIG. 1. Representation of a given configuration of time indices
�1 , . . . ,�n and states ���k� of the partition function �6� �left image�
and the extended partition function �9� �right image�.
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Z��,�� = Tr e−��−��ĤĜe−�Ĥ. �8�

It is straightforward from �6� to show that the extended par-
tition function Z�� ,�� takes the form

Z��,�� = �	
0��1�¯��n��

��0�e−�VT̂��n���n−1���n−1�T̂��n−1�

���n−2� � ¯ � ��L+1�T̂��L���L���L�Ĝ�����R�

���R�T̂��R���R−1� � ¯ � ��2�T̂��2���1���1�T̂��1�

���0�d�1 ¯ d�n, �9�

where we denote by ��L� and �L ���R� and �R� the state and

the time of action of the T̂ operator appearing to the left

�right� of the Green operator, and Ĝ��� is defined by

Ĝ��� = e�V̂Ĝe−�V̂. �10�

In order to define the Green operator Ĝ, we first introduce the

“normalized” creation and annihilation operators Â† and Â,

Â† = a† 1

�n̂ + 1
, Â =

1

�n̂ + 1
a , �11�

where a† and a are the usual boson creation and annihilation
operators, and n̂=a†a is the number operator. While unusual,
the number operator n̂ appearing in the denominator of a
square root is perfectly well defined by a power series,

1

�n̂ + 1
= �

p=0

+� �−
1

2

p �2p − 1� ! !

p!
n̂p. �12�

It follows from �11� and �12� that

Â†�n� = �n + 1�, Â�n� = �n − 1� , �13�

with the particular case that Â�0�=0. Apart from this excep-

tion, the operators Â† and Â change a state �n� by respec-
tively creating and annihilating one particle, but they do not
change the norm of the state.

Using the notation ��ip�jq to denote two subsets of site
indices i1 , i2 , . . . , ip and j1 , j2 , . . . , jq with the constraint that
all indices in subset i are different from the indices in subset
j �but several indices in one subset may be equal�, we define

the Green operator Ĝ by

Ĝ = �
p=0

+�

�
q=0

+�

gpq �
��ip�jq

�
k=1

p

Âik
† �

l=1

q

Â jl
, �14�

where gpq is a matrix that will be defined later �see Sec.
III C 6�. The Green operator can be viewed as a generaliza-
tion of the worm operator introduced in the CW algorithm
�see Sec. III B�. Note that, because the two subsets �ip and
�jq have no index in common, there is no possible cancella-

tion between the operators Â† and Â appearing in �14�. This
Green operator is going to be sampled stochastically, each
configuration leading to a measurement of a randomly se-
lected n-body Green function, thus justifying the name of the
algorithm.

Let us now consider a state ��L� which is obtained from a
state ��R� by creating p particles on sites �ip and destroying
q particles on sites �jq. From �14� we can get the corre-

sponding matrix element of Ĝ,

��L�Ĝ��R� = gpq. �15�

In particular, all diagonal matrix elements ���Ĝ��� are equal
to g00, which we will set to unity. The interpretation of the
extended partition function Z�� ,�� is the same as that of the
partition function Z���, with the addition at time � of the
Green operator. In the example of Fig. 1 �right image�, the
Green operator makes two particles jump. Note that these
jumps are not restricted to neighboring sites; in our example
one particle jumps onto a neighboring site and the other
jumps onto a second neighboring site.

B. The update scheme

As in the CW algorithm in which the worm operator up-
dates the configurations of the partition function, we use the
Green operator to update the configurations appearing in �9�.
But the procedure we follow is different and simpler. More

precisely, in the CW algorithm the worm operator Ŵ��� sug-

gests creating a new T̂ operator at time �. This creation is
always possible. Then a time shift �� of the worm operator
is chosen, to the left or to the right. If the worm operator

meets a T̂ operator, then it tries to destroy it. This destruction
is not always possible. When it is not, then the worm opera-

tor tries to “pass” the T̂ operator. After succeeding in passing
the operator, a new time shift is chosen and the worm keeps

moving until it reaches another T̂ operator, or until the cho-
sen time shift is exhausted. The passing procedure is always
possible only if the commutator of the worm operator and

the T̂ operator is zero, �Ŵ , T̂�=0. If it is not, then it will
sometimes occur that the worm operator cannot pass, and the
update will have to be canceled, which leads to some com-
plexity of the algorithm. In particular, all changes made in
the operator string from the beginning of the move must be
recorded in the event of the need for a restoration. Moreover,
it is no longer guaranteed that the algorithm is ergodic. In-
deed, when a rejection occurs because of the inability to pass
an operator, this rejection is systematic �the move is always
rejected for the considered configuration� instead of statisti-
cal �it has a probability to be accepted or rejected�. This
might cause problems with ergodicity.

In the SGF algorithm, this difficulty is overcome thanks to
the Green operator. The definition of the Green operator en-

sures that it is always possible to destroy a T̂ operator. As a
result neither a passing procedure nor a zero commutator

between Ĝ and T̂ is required. In this way the algorithm is
simpler.

The update scheme is the following.
�1� We choose a direction of propagation left or right for

the Green operator, according to some probabilities P�←�
and P�→�.
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�2� We choose with a probability P←
† ��� �or P→

† ���� to

create a new T̂ operator at time � on the right �or the left� of
the Green operator.

�3� If the creation is accepted, a new intermediate state ���
is chosen with some probability P���.

�4� Then we choose a time shift �� with a probability
P←���� or P→����. If the time shift can be exhausted with-

out reaching a T̂ operator, then the Green operator is shifted
to the new position and the update stops there.

�5� If a T̂ operator is met before the end of the shift, it is
destroyed and the Green operator stops there.

By creating and destroying T̂ operators, the time indices
�k and states ��k� visited by the Green operator are updated.
In this way the extended partition function Z�� ,�� �9� is
sampled. When a diagonal configuration of the Green opera-
tor occurs, ��L�= ��R�, such a particular configuration of
Z�� ,�� belongs to the space of configurations of Z���. Mea-
surements of physical quantities can then be performed.
Since it is always possible to create an operator at any time,
and since it is always possible to destroy a reached operator,
it follows that the ergodicity of the algorithm is ensured.

C. Detailed balance

We describe here how to perform the update scheme by
satisfying detailed balance. Four different situations have to
be considered �versus five in the CW algorithm, the extra one
being the “passing” move�.

�1� No creation, shift, no destruction.
�2� Creation, shift, no destruction.
�3� No creation, shift, destruction.
�4� Creation, shift, destruction.
We will assume in the following that a left move is cho-

sen. We denote the probability of the initial �final� configu-
ration by Pi �Pf�. We denote by Si→f the probability of a
transition from configuration i to configuration f , and by Sf→i
the probability of the reverse transition. Finally, we denote
by Ai→f the acceptance rate of a transition from i to f , and by
Af→i the acceptance rate of the reverse transition. The de-
tailed balance can be written as

PiSi→fAi→f = PfSf→iAf→i. �16�

A possible solution for the acceptance rate is the Metropolis
solution �18�,

Ai→f = min�1,q� �17�

with

q =
PfSf→i

PiSi→f
. �18�

1. No creation, shift, no destruction

We consider here the case where a left move is chosen
with probability P�←�, no creation is performed with prob-
ability 1− P←

† ���, a time shift of �� is chosen with probabil-
ity P←����, and finally no destruction occurs because the

time shift is supposed to be too small to reach a T̂ operator.

The probability of the initial configuration is the Boltz-
mann weight appearing in �9�:

Pi � ��L�Ĝ�����R� � e�VL��L�Ĝ��R�e−�VR. �19�

The probability of the final configuration is

Pf � ��L�Ĝ�� + �����R� � e��+���VL��L�Ĝ��R�e−��+���VR.

�20�

The probability for the transition from the initial configura-
tion to the final configuration is the probability P�←� of
choosing a left move, times the probability of no creation
1− P←

† ���, times the probability P←���� of performing a left
shift of ��:

Si→f = P�←��1 − P←
† ����P←���� . �21�

The probability of suggesting the reverse move is exactly
symmetric:

Sf→i = P�→��1 − P→
† �� + ����P→���� . �22�

The acceptance rate of the corresponding move is given by
�17�, with

q =
e���VL−VR�P�→��1 − P→

† �� + ����P→����
P�←��1 − P←

† ����P←����
. �23�

Because of the exponential appearing in �23� the acceptance
rate might be small if the diagonal energy VR is greater than
VL. In order to keep a good acceptance rate, this exponential
can be canceled by making a good choice for the probability
of the time shift,

P←���� = VRe−��VR, P→���� = VLe−��VL. �24�

Equation �23� becomes

qc”d” =
VL

P�←��1 − P←
† ����

P�→��1 − P→
† �����

VR�
�25�

where we have defined ��=�+�� and VR� =VR, and we have
used the notation qc”d” to emphasize that there is no creation
and no destruction. We also have explicitly written qc”d” as a
product of a quantity that depends only on the initial con-
figuration, times a quantity that depends only on the final
configuration.

2. Creation, shift, no destruction

We consider here the case where a left move is chosen

with probability P�←�, and a creation of a T̂ operator is
performed with probability P←

† ���, thus introducing a new
intermediate state ��R�� on the right of the Green operator,
chosen with a probability P��R��. A time shift of �� is then
chosen with probability P←����, and finally no destruction
occurs because the time shift is supposed to be too small to

reach a T̂ operator.
The probability of the initial configuration is given by

�19�. The probability of the final configuration is
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Pf � ��L�Ĝ�� + �����R����R��T̂�����R�

� e��+���VL��L�Ĝ��R��e
−��VR���R��T̂��R�e−�VR. �26�

The probability of the transition from the initial configura-
tion to the final configuration is the probability P�←� of
choosing a left move, times the probability P←

† ��� of creating

a new T̂ operator at time �, times the probability P��R�� of
choosing the new state ��R��, times the probability P←����
of performing a left shift of ��:

Si→f = P�←�P←
† ���P��R��P←����

= P�←�P←
† ���P��R��VR�e

−��VR�. �27�

We have explicitly used our previous choice �24� for the
probability of the time shift, by taking care that the state ��R�
on the right of the Green operator has been updated to ��R��.

The probability for the reverse move is the probability of
choosing a right move P�→�, times the probability of no
creation 1− P→

† ��+���, times the probability to reach the

T̂��� operator on the right and destroy it. This latter probabil-
ity is the probability of choosing a right shift greater than ��.
It is obtained by integrating P→�t� from �� to +�. Because
of our choice �24�, this integral can be explicitly calculated:

Sf→i = P�→��1 − P→
† �� + ����	

��

+�

P→�t�dt

= P�→��1 − P→
† �����e−��VL. �28�

Using �18� to calculate the corresponding acceptance factor
qcd”, all exponentials cancel and we get

qcd” =
��L�Ĝ��R����R��T̂��R�P�→��1 − P→

† �����

��L�Ĝ��R�P�←�P←
† ���P��R��VR�

. �29�

We can here explicitly make a choice for the probability
P��R�� of the new state ��R��. If we choose the new state
proportionally to the Boltzmann weight of the new configu-
ration,

P��R�� =
��L�Ĝ��R����R��T̂��R�

�
�R�

��L�Ĝ��R����R��T̂��R�

=
��L�Ĝ��R����R��T̂��R�

��L�ĜT̂��R�
, �30�

then the acceptance factor �29� becomes

qcd” =
��L�ĜT̂��R�

P�←�P←
† �����L�Ĝ��R�

P�→��1 − P→
† �����

VR�
, �31�

where qcd” is written as a quantity that depends only on the
initial configuration, times a quantity that depends only on
the final configuration.

3. No creation, shift, destruction

We consider here the case where a left move is chosen
with probability P�←�, and no creation is performed with
probability 1− P←

† ���. A time shift of �� is then chosen with

probability P←����, and a destruction of the T̂��L� operator
to the left of the Green operator occurs because the chosen
time shift �� is taken to be larger than �L−�.

The probability of the initial configuration is

Pi � ��L+1�T̂��L���L���L�Ĝ�����R�

� e�LVL+1��L+1�T̂��L�e−��L−��VL��L�Ĝ��R�e−�VR. �32�

The probability of the final configuration is

Pf � ��L+1�Ĝ��L���R� � e�LVL+1��L+1�Ĝ��R�e−�LVR. �33�

The probability of the transition from the initial configura-
tion to the final configuration is the probability P�←� of
suggesting a left move, times the probability of no creation
1− P←

† ���, times the probability of suggesting a shift greater
than �L−�, that is to say, the integral of P←�t� from �L−� to
+�:

Si→f = P�←��1 − P←
† ����	

�L−�

+�

P←�t�dt

= P�←��1 − P←
† ����e−��L−��VR. �34�

The probability of the reverse transition is the probability of
choosing a right move, times the probability P→

† ��L� of cre-

ating a new T̂ operator to the left of the Green operator, times
the probability P��L� of choosing the new intermediate state
��L�, times the probability P→��L−�� of performing a right
shift of �L−�. We get

Sf→i = P�→�P→
† ��L�P��L�P→��L − ��

= P�→�P→
† ��L�P��L�VLe−��L−��VL �35�

with

P��L� =
��L+1�T̂��L���L�Ĝ��R�

��L+1�T̂Ĝ��R�
. �36�

The acceptance factor is given by

qc”d =
VL

P�←��1 − P←
† ����

P�→�P→
† ������L��Ĝ��R��

��L��T̂Ĝ��R��
, �37�

where we have defined ��=�L, ��L��= ��L+1�, and ��R��
= ��R�. Again, the acceptance factor qc”d is written as a quan-
tity that depends only on the initial configuration, times a
quantity that depends only on the final configuration.

4. Creation, shift, destruction

Finally we consider the case where a left move is chosen

with probability P�←�, a creation of a new T̂ operator is
chosen with probability P←

† ���, leading to the introduction of

a new state ��R�� with probability P��R��, and the T̂ operator
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to the left of the Green operator is destroyed because the
chosen time shift �� is taken to be greater than �L−�.

The probability of the initial configuration is given by
�32�. The probability of the final configuration is

Pf � ��L+1�Ĝ��L���R����R��T̂�����R�

� e�LVL+1��L+1�Ĝ��R��e
−��L−��VR���R��T̂��R�e−�VR. �38�

The probability of the transition from the initial configura-
tion to the final configuration is the probability P�←� of
choosing a left move, times the probability P←

† ��� of creating

a new T̂ operator to the right of the Green operator, times the
probability P��R�� of choosing the new state ��R��, times the

probability of reaching the T̂ to the left of the Green operator,
that is to say, the integral of P←�t� from �L−� to +�:

Si→f = P�←�P←
† ���P��R��	

�L−�

+�

P←�t�dt

= P�←�P←
† ���P��R��e

−��L−��VR�. �39�

The probability of suggesting the reverse transition is exactly
symmetric:

Sf→i = P�→�P→
† ��L�P��L�	

�L−�

+�

P→�t�dt

= P�→�P→
† ��L�P��L�e−��L−��VL. �40�

Using the notation ��=�L and ��L��= ��L+1�, the acceptance
factor takes the form

qcd =
��L�ĜT̂��R�

P�←�P←
† �����L�Ĝ��R�

P�→�P→
† ������L��Ĝ��R��

��L��T̂Ĝ��R��
,

�41�

and is again written as a quantity that depends only on the
initial configuration, times a quantity that depends only on
the final configuration.

5. Simplification of the acceptance factors

Having determined all acceptance factors qc”d” ,qcd” ,qc”d ,qcd
for all kinds of updates, we still have some freedom in the
choice of the probabilities of creation P←

† ��� and P→
† ���, and

the probabilities of choosing a left or right move, P�←� and
P�→�.

Let us define the following quantities:

q←��� =
��L�ĜT̂��R�

P�←�P←
† �����L�Ĝ��R�

, �42�

q→��� =
��L�T̂Ĝ��R�

P�→�P→
† �����L�Ĝ��R�

, �43�

q”←��� =
VL

P�←��1 − P←
† ����

, �44�

q”→��� =
VR

P�→��1 − P→
† ����

. �45�

The acceptance factors take the form

qc”d” =
q”←���
q”→����

, qcd” =
q←���
q”→����

, �46�

qc”d =
q”←���
q→����

, qcd =
q←���
q→����

. �47�

We immediately see that all acceptance factors become equal
if q←���=q”←��� and q→���=q”→���. This is realized if we
choose for the probabilities of creation

P←
† ��� =

��L�ĜT̂��R�

VL��L�Ĝ��R� + ��L�ĜT̂��R�
, �48�

P→
† ��� =

��L�T̂Ĝ��R�

VR��L�Ĝ��R� + ��L�T̂Ĝ��R�
. �49�

Then all acceptance factors qc”d” ,qcd” ,qc”d ,qcd become

q =
P�→�r←���
P�←�r→����

for a left move, �50�

q =
P�←�r→���
P�→�r←����

for a right move, �51�

with

r←��� = VL +
��L�ĜT̂��R�

��L�Ĝ��R�
, �52�

r→��� = VR +
��L�T̂Ĝ��R�

��L�Ĝ��G�
. �53�

Finally, we still have some freedom for the choice of P�←�
and P�→�. If we choose

P�←� =
r←���

r←��� + r→���
, P�→� =

r→���
r←��� + r→���

, �54�

and define

Ri = r←��� + r→���, Rf = r←���� + r→���� , �55�

then we are left with a unique acceptance factor which is
independent of the chosen direction of the move, indepen-
dent of the nature of the move �creation or not, destruction or
not�, and depends only on the initial and the final configura-
tions:

q =
Ri

Rf
. �56�

This result allows us to simplify the algorithm. Indeed, by
combining �56� and �18� we get
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PfSf→i

PiSi→f
=

Ri

Rf
, �57�

which can be rewritten as

RfPfSf→i

RiPiSi→f
= 1. �58�

This last equation can be interpreted as follows. If we accept
all moves without taking care of the acceptance factor, then
we are sampling the extended partition function according to
the pseudo-Boltzmann weight Ps=RP. The algorithm is sim-
plified, because all moves are accepted and it is not neces-
sary to keep track of all changes performed during an update
in case of the need for a restoration of the initial configura-
tion.

The statistics of a physical quantity described by an op-

erator Ô relevant to the real Boltzmann distribution is recov-
ered by using the relation

�Ô�P =
�Ô/R�Ps

�1/R�Ps

, �59�

which is well defined because the quantity R is well behaved:
it never vanishes nor diverges. We emphasize here that this
simplification of accepting all moves is always possible in

the SGF algorithm, even if the T̂ operator does not commute
with the Green operator, whereas it is possible in the CW

algorithm only if the T̂ operator commutes with the worm
operator.

6. Determination of the gpq matrix

Measurements of physical quantities represented by diag-
onal operators can be performed only when the Green opera-
tor is in a diagonal configuration, ��L�= ��R�. The situation is
different when measuring Green functions: Their measure-
ment extends from a diagonal configuration to a different
configuration, while exploring the extended space of con-
figurations. But the end of the measurement is marked by the
return to a diagonal configuration �see Sec. III D�. For the
Green operator to have a chance to go back to a diagonal
configuration, an appropriate choice of the gpq matrix must
be made. As a result, gpq must decrease sufficiently fast as p
and q go to infinity, in order to prevent the state ��L� from
being too different from ��R�. The exact choice of gpq de-
pends on the application of the algorithm. It is natural to
choose gpq to be a decreasing function of p+q.

For the example of the Hamiltonian described by �1�–�3�,
we find that the choice

gpq = �1 if p + q 	 2

e−4�2 − p − q�2
if p + q 
 2� �60�

leads to very good statistics for one-body Green functions of
the form �ai

†aj� or �mi
†mj�. However, if one is interested in

more complicated Green functions, �ai
†aj

†akal� for instance,
the choice

gpq = �1 if p + q 	 4

e−4�4 − p − q�2
if p + q 
 4� �61�

is more appropriate, accompanied by a slowing down of the
algorithm but also by an improvement of the statistics. An
important thing to notice is that there cannot be any “cutoff”
on gpq. Indeed, the choice

gpq = �1 if p + q 	 4

0 if p + q 
 4
� �62�

leads to a crash of the algorithm, because configurations
where ��L� and ��R� are connected by p+q=4 creations and
annihilations will occur, and the Green operator might be
unable to destroy an operator, if its destruction leads to states
��L�� and ��R�� that are connected by a higher order of cre-
ations and annihilations �see Sec. IV for a concrete example�.

7. Efficiency and purposes of the algorithm

The generality of the SGF algorithm could result in loss
of efficiency compared to other algorithms �when such algo-
rithms can be applied� because the extended space of con-
figurations that is sampled is much larger than the one
sampled by other methods, due to the infinite sum in the
expression for the Green operator. The advantage, however,
is that this gives access to n-body Green functions. Any con-
figuration �complicated or not� of the Green operator allows
a measurement of the corresponding Green function �see
Sec. III D�. Hence the purpose of the SGF algorithm is not to
compete with the speed of other algorithms. The properties
that make the SGF method useful are that �i� it is simple to
apply to any Hamiltonian of the form �1�, �ii� it is very gen-
eral, and �iii� n-body Green functions are easily accessible.

D. Measuring physical quantities

Let us consider the density operator of the system, �̂

= 1
Ze−�Ĥ. For any physical quantity described by an operator

Ô, the expectation value is given by

�Ô� = Tr Ô�̂ = �
�0�

��0�Ô�������̂��0� . �63�

1. Quantities represented by diagonal operators

If the operator Ô is diagonal, then �63� becomes

�Ô� = �
�

���Ô�������̂��� �
1

Sd
�

�s←�̂

O��s� , �64�

where the notation �s← �̂ means that the states �s are gen-
erated according to the Boltzmann weight ��s��̂��s�, and Sd is
the number of samples of diagonal configurations. Equation
�64� becomes exact when the number of samples goes to
infinity, and the error decays as the square root of Sd, accord-
ing to the central limit theorem. Since we are actually sam-
pling with a pseudo-Boltzmann distribution, Eq. �59� must
be used, leading to
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�Ô� =

�
�s←�̂s

O��s�/R��s�

�
�s←�̂s

1/R��s�
, �65�

where the notation �s← �̂s means that the states �s are gen-
erated by accepting all moves, irrespective of the acceptance
factor �56�. As a result, all quantities represented by diagonal
operators can be directly measured when a diagonal configu-
ration of the Green operator occurs. This includes density-
density correlation functions �n̂in̂j�, for instance. In particu-
lar, one of the easiest quantities to measure is the diagonal

energy �V̂�. It is measured by averaging the potential VL �or
VR� to the left �or the right� of the Green operator using Eq.

�65�. The nondiagonal energy �T̂� should be evaluated in
principle by measuring the one-body Green functions �de-
scribed below�. But we have actually direct access, simply
by averaging the length n of the operator string �6�,

�T̂� =
1

�
�n� . �66�

Indeed, Eq. �66� can be derived easily by considering the

quantity Z�� ,��=Tr e−��V̂−�T̂�. From �4� this can be written
as

Z��,�� = Tr e−�V̂T�exp��	
0

�

T̂���d�

= Tr e−�V̂T��

n

1

n!��	
0

�

T̂���d�
n

. �67�

By noticing that �T̂�= 1
� � �

�� ln Z�� ,������=1, we get

�T̂ �=
1

�Z�
n

nTr e−�V̂T�

1

n!��0

�

T̂���d��n

Boltzmann weight of n

,

�68�

which leads to �66�.
We can actually improve the estimates of diagonal quan-

tities by integrating them over the imaginary time axis,

�Ô� =
1

�
	

0

�

�Ô����d� . �69�

In order to evaluate �69�, let us consider a given configura-
tion of time indices �1 ,�2 , . . . ,�n of the operator string in �6�,
with the convention that �n+1=�1. For any � in the range
�0,��, we have the identity

�
k=1

n

��k 	 � � �k+1� = 1, �70�

with �arg�=1 if arg is true, and 0 otherwise. The identity
expresses that � has to be located somewhere between two
consecutive time indices �k and �k+1. Therefore we have

Ô��� = Ô����
k=1

n

��k 	 � � �k+1�

= �
k=1

n

Ô��k���k 	 � � �k+1� . �71�

The integral of �71� is immediate:

1

�
	

0

�

Ô���d� =
1

�
�
k=1

n

Ô��k���k+1 − �k� . �72�

The right-hand side of �72� can be directly averaged over the

simulation, and leads to an improved estimate of �Ô�. Time-
dependent density-density correlation functions

Cij��� = �n̂i�0�n̂j���� =
1

�
	

0

�

n̂i����n̂j�� + ���d�� �73�

are also easy to measure using expression �71�.
The superfluid density �s can be determined by making

use of Pollock and Ceperley’s formula �19�,

�s =
�W2�L2−d

2dt�
, �74�

where W is the winding number, L is the number of lattice
sites in one direction of the lattice �assuming the same value
for all directions�, t is the hopping parameter, and d is the
dimension. The winding number is sampled by the algo-
rithm, and is easy to measure. It is equal to the number of
times that the worldlines cross the boundaries of the system
in a given direction, minus the number of times they cross in
the opposite direction. In this way the superfluid density
is easily evaluated. Section III E explains how to determine
the zero-temperature superfluid density, using a finite-
temperature simulation.

2. Quantities represented by nondiagonal operators

Any physical quantity represented by a nondiagonal op-
erator can be expressed in terms of Green functions. Green
functions can be measured “on the fly” while the Green op-
erator is updating configurations. Let us consider the expec-

tation value of a particular term Ĝp of the Green operator:

�Ĝp� = Tr Ĝp�̂

= �
�L,�R

��L�Ĝp��R���R��̂��L� . �75�

It is important to understand that the states ��L� and
��R� are not generated with probability proportional to
��R��̂��L� but with probability P��L ,�R� proportional to

��L�Ĝ��R���R��̂��L�, that is to say,

P��L,�R� =
��L�Ĝ��R���R��̂��L�

Tr Ĝ�̂
. �76�

Thus, Eq. �75� can be rewritten as:
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�Ĝp� = Tr Ĝ�̂ �
�L,�R

��L�Ĝp��R�

��L�Ĝ��R�
P��L,�R� . �77�

By performing a sampling according to the distribution
P��L ,�R�, we get

�Ĝp� =
Tr Ĝ�̂

S
�

�L,�R←P

��L�Ĝp��R�

��L�Ĝ��R�

=
Tr Ĝ�̂

S
�

�L,�R←P

���L�Ĝp��R� � 0� , �78�

where S is the number of samples including diagonal and
nondiagonal configurations. In order to evaluate �78�, one

needs to be able to calculate Tr Ĝ�̂. This can be achieved by
considering the trace of �̂:

Tr �̂ = 1 = �
�L,�R

��L��R���R��̂��L�

= Tr Ĝ�̂ �
�L,�R

��L��R�

��L�Ĝ��R�
P��L,�R�

=
Tr Ĝ�̂

S
�

�L,�R←P

���L,�R� =
Sd

S
Tr Ĝ�̂ . �79�

By injecting �79� into �78� we get

�Ĝp� =
1

Sd
�

�L,�R←P

���L�Ĝp��R� � 0� . �80�

Again, since we are sampling by accepting all moves, Eq.
�59� must be used instead of �80�, leading to

�Ĝp� =

�
�L,�R←Ps

���L�Ĝp��R� � 0�/R��L,�R�

�
�s←�̂s

1/R��L,�R�
, �81�

where the notation �L ,�R←Ps means that the states ��L� and
��R� are generated by accepting all moves. Finally, a renor-
malization can be performed onto Gp by inverting �11� in
order to get the desired Green function. For example, let us
suppose that we want to measure �a2

†a5�. The corresponding

term Ĝ25 of the Green operator is Ĝ25=g11A2
†A5. We get

�a2
†a5� = �A2

†�n̂2 + 1�n̂5 + 1A5� =
1

g11
��n̂2Ĝ25

�n̂5�

=
1

g11

�
�L,�R←Ps

�n2
L��L�A2

†A5��R��n5
R/R��L,�R�

�
�s←�̂s

1/R��L,�R�
,

�82�

where n2
L and n5

R are respectively the occupation numbers of
the states ��L� and ��R�.

E. Improved estimator for the zero-temperature
superfluid density

As we have seen in the previous section, the superfluid
density �s can be easily obtained by using �74�. However, the
superfluid density shows a strong dependence on the inverse
temperature �, especially for one-dimensional �1D� systems.
It has been shown �20� for 1D systems that superfluidity
exists in the thermodynamic limit only at zero temperature,
and that the zero-temperature limit should be taken prior to
the thermodynamic limit. This requires one in principle to
perform simulations with increasing values of the inverse
temperature �, which is expensive in computer time, and
then perform an extrapolation to �= +�. We propose here an
improved estimator that gives the zero-temperature super-
fluid density at arbitrarily large temperature, thus making
simulations easier.

This improved estimator has been proposed by Batrouni
and Scalettar for a discrete time worldline algorithm �6�. We
give here a generalization to continuous time. The improved
estimator is actually for the winding number, and we deter-
mine �s using �74�. We consider here a one-dimensional sys-
tem, in order to ease the explanation of the method. Let us
introduce for our purpose the continuous time pseudocurrent
j��� of a given configuration of the operator string in �6�,

j��� = �
k=1

n

D��k���� − �k� , �83�

with

D��k� = � 1 if right jump at time �k,

− 1 if left jump at time �k.
� �84�

The winding number is then obtained by integrating the
pseudocurrent over the imaginary time,

W =
1

L
	

0

�

j���d� =
1

L
�
k=1

n

D��k� . �85�

The trick is the following. Instead of directly calculating the
winding using �85�, we evaluate the Fourier transform j̃���
of �83� for �1=2� /� and �2=4� /�:

j̃��� = 	
0

�

j���e−i��d� �86�

=�
k=1

n

D��k�e−i��k. �87�

It is straightforward to check that W2= � j̃��=0��2 /L2. But in-
stead of calculating j̃��=0�, we perform an extrapolation to
zero frequency:

W2 � �2� j̃��1��2 − � j̃��2��2�/L2=̂Wext
2 . �88�

Equation �88� becomes exact when � goes to infinity, since
both �1 and �2 go to zero. It turns out that, when numeri-
cally computed, Wext

2 shows a quasilinear dependence on �.
As a result, when injected in �74�, the dependence on � is
canceled by the denominator. In this way, the zero-
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temperature superfluid density can be evaluated at nonzero
temperature. Figure 2 shows the efficiency of this method by
comparing the dependence on temperature of the superfluid
density, calculated using the true winding number W and
using the improved estimator Wext.

IV. THE ALGORITHM IN PRACTICE

We describe here how to represent in practice a Hamil-
tonian, the Green operator, and the associated extended par-
tition function in the memory of a computer. The proposed
representation may not be the most efficient, but it has the
advantage of being easy to handle. We will consider here the

Hamiltonian �1� with the V̂ and T̂ operators defined by �2�
and �3�. We have seen that a given configuration of the op-
erator string in �9� is fully determined by the time indices
�1 , . . . ,�n and the set of states ���k�. However, there is too
much information in such a representation, because the states
in the set ���k� are all almost the same. Thus, it is better to
specify a configuration by the two states ��L� and ��R�, and

specify for each T̂��k� operator which term in �3� is actually
acting. We can use the following “operator” data structure to
represent each operator in the operator string.

Type: An integer number that describes if the operator is a
ai

†aj, mi
†mj, mi

†aiai, or ai
†ai

†mi operator. A special value is

assigned for the Ĝ operator.
Time: A real number that represents the time �k of action

of the operator.
Index1: An integer number that is the site index. If the

type is ai
†aj or mi

†mj, then index1 is the index of the creation
operator. If the type is mi

†aiai or ai
†ai

†mi, then index1 is the

site index where the conversion occurs. If the type is Ĝ, then
the value of index1 is ignored.

Index2: An integer number that is the site index. If the
type is ai

†aj or mi
†mj, then index2 is the index of the annihi-

lation operator. If the type is mi
†aiai, ai

†ai
†mi, or Ĝ, then the

value of index2 is ignored.

PtrL: A pointer onto an “operator” data structure that rep-
resents the operator on the left of this operator.

PtrR: A pointer onto an “operator” data structure that rep-
resents the operator on the right of this operator.

This data structure is part of a doubly linked list. It can be
used to build the operator string by linking the “operators”
together. The states ��L� and ��R� can be represented by ar-
rays of occupation numbers. The configuration of the opera-
tor string is then fully represented �Fig. 3�. This structure has
the advantage of allowing easily the insertion of a new piece
or the destruction of a piece, which correspond, respectively,

to a creation or a destruction of a T̂ operator. Changing the
time � of the Green operator in the range ��L ,�R� corresponds

to moving the Green operator between its left and right T̂
operators.

It is useful here to add some extra information in the
computer. We define the “field operator” data structure in
order to have a suitable representation of the Green operator:

Type: An integer describing the type of the normalized
field operator, Ai

†, Ai, Mi
†, or Mi.

Index: An integer describing the site index where the field
operator is acting.

Ptr: A pointer onto a “field operator” data structure that
represents the next field operator.

This data structure is part of a linked list. It can be used to
build the term of the Green operator that connects the states
��L� and ��R� �Fig. 4�. We will call this term the “active

term” of Ĝ and denote it by G.
We have seen in Sec. III C that we need to be able to

evaluate matrix elements of the form

NT = ��k+1�T̂��k� , �89�

0 5 10 15 20
β
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using true winding
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ext
using improved estimator

FIG. 2. �Color online� Superfluid density as a function of the
inverse temperature �. Comparison between the value �s measured
using the true winding number, and the value �s

ext measured using
the improved estimator. The improved estimator converges faster to
the large-� �zero-temperature� limit.
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FIG. 3. The operator string can be represented by a doubly
linked list of “operator” data structures, where each piece represents

a T̂ operator or the Green operator. The advantage of such a repre-

sentation is that it is easy to insert or remove T̂ operators. We have
used the notation ���= �n1

an2
an3

an4
a :n1

mn2
mn3

mn4
m� for the states ��L� and

��R�.
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FIG. 4. The active term of the Green operator can be repre-
sented by a linked list of “field operator” data structures, where
each piece represents a normalized creation or annihilation operator.
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NG = ��L�Ĝ��R� , �90�

NGT = ��L�ĜT̂��R� = �
�

��L�Ĝ������T̂��R� , �91�

NTG = ��L�T̂Ĝ��R� = �
�

��L�T̂������Ĝ��R� . �92�

The NT matrix element is easy to calculate, since we know

from the “operator” data structure which term of T̂ is acting.
The NG matrix element is also easy to calculate: We just run
over the linked list that represents the active term of the
Green operator and count how many creation operators and
how many annihilation operators we have. The value of the
matrix element is then given by the gpq matrix.

The evaluation of the NGT �or NTG� matrix element is
required when we calculate the probability of insertion of a

new T̂ operator. For this, we need to look for all possible
intermediate states ���. For a given intermediate state, only

one term of the T̂ operator �for example a3
†a4 or m2

†a2a2�
gives a nonzero value to the matrix element. We will call this

term the active term of T̂ and denote it by T̃. The important
thing to notice is that all active terms are inversible and that

the inverse of T̃ is proportional to T̃†. So the procedure is the
following. Instead of building the list of states that we get by

applying T̂ onto ��R� for NGT �or ��L� for NTG�, we build a list

of all possible active terms T̃ that give a nonzero value when
applied onto the ket �or the bra�. Then for each possible

active term T̃ we consider the associated normalized operator
T �obtained by replacing all creation and annihilation opera-
tors by the corresponding normalized operators �11��, and we
build the new corresponding active term G� of the Green
operator as follows:

��L�Ĝ��R� → ��L�Ĝ������T̂��R� ⇒ G� = GT†, �93�

��L�Ĝ��R� → ��L�T̂������Ĝ��R� ⇒ G� = T†G . �94�

It is clear that Eqs. �93� and �94� always have a solution for
G�, and that it corresponds to a term of the Green operator.

This ensures that it is always possible to create a T̂ operator
acting on any state at any imaginary time. It may happen that
the new active term G� contains normalized creation and
annihilation operators that cancel each other. In that case a
“simplification procedure” has to be called in order to re-
move the obsolete operators and prevent a useless growth of

the linked list. Having determined all new �G� , T̃� pairs, it is
easy to calculate the weights of the corresponding matrix
elements. Then a particular pair can be chosen with a prob-
ability proportional to its weight. A new piece of “operator”
data structure is then created and initialized with the active

term T̃ of the chosen pair, and inserted in the doubly linked
list of the operator string. The active term G of the Green
operator is also updated with G�.

Finally, we need to determine the new active term G� of

the Green operator when a T̂ operator is destroyed. It is sim-
ply given by

��L+1�T̂��L���L�Ĝ��R� → ��L+1�Ĝ��R� ⇒ G� = TG , �95�

��L�Ĝ��R���R�T̂��R−1� → ��L�Ĝ��R−1� ⇒ G� = GT . �96�

Again, G� always has a solution which is a particular term of
the Green operator. Thus it is always possible to destroy any
encountered operator. The simplification procedure is again
called in order to remove obsolete normalized creation and

annihilation operators in the new G�. The T̂ operator is re-
moved from the doubly linked list of the operator string, and
the active term G of the Green operator is updated with G�.

As a concrete example, let us build the list of all possible

active terms T̃ of the T̂ operator that can be inserted to the
left of the Green operator of Fig. 3, and the associated active
terms G�. We look for all possible transitions:

�1011:0000�Ĝ�0001:0001�

→ �1011:0000�T̂������Ĝ�0001:0001� �97�

⇒G� = T†G . �98�

The solutions �after simplification of G�� are

T̃ =�
a1

†a2,

a1
†a4,

a3
†a2,

a3
†a4,

a4
†a3,

a4
†a1,

� , G� =�
A2

†A3
†M4,

A3
†A4

†M4,

A2
†A3

†M4,

A1
†A4

†M4,

A1
†A3

†A3
†A4M4,

A1
†A1

†A3
†A4M4.

� �99�

Let us suppose that the �T̃=a4
†a1 , G�=A1

†A1
†A3

†A4M4� pair is
chosen. The new state ��� introduced on the left of the Green
operator is

��� = A1
†A1

†A3
†A4M4�0001:0001� = �2010:0000� . �100�

Now if we decide to destroy the T̂ operator on the right of the
Green operator, the state ��R� is removed and the only solu-
tion for the new active term G� is �after simplification�

G� = G�M4
†M3 = A1

†A1
†A3

†A4M3. �101�

The new state ��R�� on the right of the Green operator is given
by

��R�� = M3
†M4��R� = �0001:0010� . �102�

This example illustrates how the algorithm is easy to apply
to any Hamiltonian of the form �1�, provided that the nondi-

agonal part T̂ is positive definite. Figures 5 and 6 show a
comparison between an exact diagonalization on a four-site
lattice initially loaded with three atoms and no molecule, and
QMC results obtained with the SGF algorithm. The perfect
agreement confirms the exactness of the algorithm.
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V. CONCLUSION

We present a quantum Monte Carlo algorithm, the sto-
chastic Green function algorithm. This algorithm can be eas-
ily applied to a wide class of Hamiltonians, including multi-
species Hamiltonians. The algorithm is completely
independent of the dimension of the system, and works in the
canonical ensemble, which is preferred for systems with sev-
eral species of particles. Finally, the algorithm gives access
to n-body Green functions, which provide momentum distri-

bution functions, thus allowing useful connections with ex-
periments.
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FIG. 5. �Color online� Comparison between an exact diagonal-
ization on a four-site lattice, and the SGF algorithm. The parameters
are ta=1, tm=0.5, Uaa=4, Uam=12, Umm= +�, D=0, and �=4. The
figure shows the total energy �E�, the number of atoms �Na�, and the
number of molecules �Nm�. The exact curves fit perfectly in the
error bars of the QMC results. Note that for all points we have
Na+2Nm=3, which is our canonical constraint.
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FIG. 6. �Color online� Comparison between an exact diagonal-
ization on a four-site lattice, and the SGF algorithm. The parameters
are ta=1, tm=0.5, Uaa=4, Uam=12, Umm= +�, D=0, and �=4. The
figure shows the atomic Green function �a1

†a3� and the mixed Green
function �m1

†a2a2�. The exact curves fit perfectly in the error bars of
the QMC results.
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